Algoritmo Recursivo Médio Móvel Filtro


O cientista e os coordenadores guia para processamento de sinal digital Por Steven W. Smith, Ph. D. Uma grande vantagem do filtro de média móvel é que ele pode ser implementado com um algoritmo que é muito rápido. Para entender esse algoritmo, imagine passar um sinal de entrada, x, através de um filtro de média móvel de sete pontos para formar um sinal de saída, y. Agora, veja como dois pontos de saída adjacentes, y 50 e y 51, são calculados: Estes são quase os mesmos pontos de cálculo x 48 a x 53 devem ser adicionados para y 50 e novamente para y 51. Se y 50 já foi calculado , A maneira mais eficiente de calcular y 51 é: Uma vez que y 51 tenha sido encontrado usando y 50, então y 52 pode ser calculado a partir da amostra y 51, e assim por diante. Depois que o primeiro ponto é calculado em y, todos os outros pontos podem ser encontrados com apenas uma única adição e subtração por ponto. Isso pode ser expresso na equação: Observe que esta equação usa duas fontes de dados para calcular cada ponto na saída: pontos a partir da entrada e pontos previamente calculados a partir da saída. Isso é chamado de equação recursiva, o que significa que o resultado de um cálculo é usado em cálculos futuros. (O termo recursivo também tem outros significados, especialmente na informática). O Capítulo 19 discute uma variedade de filtros recursivos em mais detalhes. Esteja ciente de que o filtro recursivo médio móvel é muito diferente dos filtros recursivos típicos. Em particular, a maioria dos filtros recursivos tem uma resposta de impulso infinitamente longa (IIR), composta de sinusoides e exponenciais. A resposta de impulso da média móvel é um pulso retangular (resposta de impulso finito, ou FIR). Este algoritmo é mais rápido que outros filtros digitais por várias razões. Primeiro, há apenas dois cálculos por ponto, independentemente do comprimento do kernel do filtro. Segundo, a adição e subtração são as únicas operações matemáticas necessárias, enquanto a maioria dos filtros digitais requerem multiplicação demorada. Em terceiro lugar, o esquema de indexação é muito simples. Cada índice na Eq. 15-3 é encontrado adicionando ou subtraindo constantes inteiras que podem ser calculadas antes do início da filtragem (isto é, p e q). Em seguida, todo o algoritmo pode ser realizado com representação de inteiro. Dependendo do hardware usado, inteiros podem ser mais do que uma ordem de magnitude mais rápida do que ponto flutuante. Surpreendentemente, a representação de números inteiros funciona melhor do que o ponto flutuante com este algoritmo, além de ser mais rápido. O erro round-off de aritmética de ponto flutuante pode produzir resultados inesperados se você não for cuidadoso. Por exemplo, imagine um sinal de 10.000 amostras sendo filtrado com este método. A última amostra no sinal filtrado contém o erro acumulado de 10.000 adições e 10.000 subtracções. Isso aparece no sinal de saída como um deslocamento à deriva. Os inteiros não têm esse problema porque não há nenhum erro de arredondamento na aritmética. Se você deve usar ponto flutuante com este algoritmo, o programa na Tabela 15-2 mostra como usar um acumulador de precisão dupla para eliminar esta deriva. Em estatísticas uma média móvel simples é um algoritmo que calcula a média não ponderada das últimas n amostras. O parâmetro n é muitas vezes chamado de tamanho de janela, porque o algoritmo pode ser pensado como uma janela que desliza sobre os pontos de dados. Usando uma formulação recursiva do algoritmo, o número de operações necessário por amostra é reduzido a uma adição, uma subtração e uma divisão. Uma vez que a formulação é independente do tamanho da janela n. A complexidade de tempo de execução é O (1). I. e. constante. A fórmula recursiva da média móvel não ponderada é, onde avg é a média móvel e x representa um ponto de dados. Assim, sempre que a janela desliza para a direita, um ponto de dados, a cauda, ​​cai para fora e um ponto de dados, a cabeça, se move para dentro. Implementação Uma implementação da média móvel simples tem que levar em conta o seguinte inicialização Algoritmo Enquanto A janela não é totalmente preenchida com valores, a fórmula recursiva falha. Armazenamento O acesso ao elemento da cauda é necessário, o que, dependendo da implementação, requer um armazenamento de n elementos. Minha implementação usa a fórmula apresentada quando a janela é totalmente preenchida com valores e, de outra forma, muda para a fórmula, que atualiza a média recalculando a soma dos elementos anteriores. Observe que isso pode levar a instabilidades numéricas devido à aritmética de ponto flutuante. No que diz respeito ao consumo de memória, a implementação usa iteradores para acompanhar os elementos da cabeça e da cauda. Isso leva a uma implementação com requisitos de memória constante independentes do tamanho da janela. Aqui está o procedimento de atualização que desliza a janela para a direita. Na maioria das coleções invalidar seus enumeradores quando a coleção subjacente é modificada. A implementação, no entanto, depende de enumeradores válidos. Especialmente em aplicativos baseados em fluxo contínuo, as necessidades de coleta subjacentes são modificadas quando um novo elemento chega. Uma maneira de lidar com isso é criar uma coleção de tamanho fixo circular simples de tamanho n1 que nunca invalida seus iteradores e, alternativamente, adicionar um elemento e chamar Shift. Eu gostaria de descobrir como realmente implementar isso, como a função de teste é muito confuso para me8230 Eu preciso converter dados para matriz, em seguida, executar SMA sma novo SMA (20, matriz) para um período de 20 SMA Como faço para lidar Shift () É necessário implementar construtores. (Desculpe pela confusão). Não você precisa don8217t converter seus dados em uma matriz, desde que seus dados implementa IEnumerable1 eo tipo enumerado é duplo. No que diz respeito à sua mensagem privada está em causa você precisa converter o DataRow para algo que é enumerable de valores duplos. Sua abordagem funciona. Shift, desliza a janela uma posição para a esquerda. Para um conjunto de dados de dizer 40 valores e um período de 20 SMA você tem 21 posições a janela se encaixa em (40 8211 20 1). Cada vez que você chamar Shift () a janela é movida para a esquerda por uma posição e Média () retorna o SMA para a posição atual da janela. Ou seja, a média não ponderada de todos os valores dentro da janela. Além disso, minha implementação permite calcular o SMA mesmo se a janela não estiver totalmente preenchida no início. Então, em essência Espero que isso ajude. Quaisquer outras questões DIREITOS DE AUTOR NOTIFICAÇÃO Christoph Heindl e cheind. wordpress, 2009-2012. O uso não autorizado e / ou a duplicação deste material sem permissão expressa e por escrito deste autor e / ou autor de blogs é estritamente proibido. Excertos e links podem ser usados, desde que o crédito completo e claro seja dado a Christoph Heindl e cheind. wordpress com direção apropriada e específica para o conteúdo original. Mensagens recentes Um filtro de média móvel mede um número de amostras de entrada e produz uma única amostra de saída. Esta acção de média remove os componentes de alta frequência presentes no sinal. Filtros de média móvel são normalmente utilizados como filtros de passa-baixa. No algoritmo de filtragem recursiva, amostras de saída anteriores também são tomadas para a média. Um filtro de média móvel mede um número de amostras de entrada e produz uma amostra de saída única. Esta acção de média remove os componentes de alta frequência presentes no sinal. Filtros de média móvel são normalmente utilizados como filtros de passa-baixa. No algoritmo de filtragem recursiva, amostras de saída anteriores também são tomadas para a média. Esta é a razão pela qual sua resposta ao impulso se estende até o infinito. Como usar o programa de exemplo O arquivo. zip contém tanto o código-fonte como o executável. Para compilar e executar o código-fonte que você precisa ter o Visual Basic 6.0 instalado no seu computador. Para executar o executável, você deve baixar e instalar arquivos de tempo de execução do Visual Basic 6.0. Execute movavgfilt. exe e você verá a janela principal. Na janela principal. A parte mais superior é o gerador de função. Que produz diferentes formas de onda para testar o filtro. Podemos interativamente alterar a amplitude, freqüência e forma do sinal gerado. Para testar o programa, primeiro devemos gerar uma forma de onda apropriada. Aqui nós geraremos uma forma de onda complexa que consiste em duas freqüências diferentes. Deixe tudo nas configurações padrão e clique no botão quotgeneratequot. Agora você pode ver um sinal de 10 Hz no gráfico ao lado do gerador de sinal. A figura abaixo mostra a forma de onda. Agora mude a Freqüência para 100 Hz e clique no botão quotgeneratequot novamente. A forma de onda recém-gerada é adicionada à forma de onda existente e a forma de onda resultante parece uma onda sin 10Hz com ruído de 100 Hz. Veja a forma de onda abaixo. Esta forma de onda é mais adequada para testar o filtro, uma vez que contém duas freqüências diferentes. Você pode executar o filtro clicando no botão quotFilterquot. Das opções disponíveis à esquerda para o botão quotFilterquot. Você pode escolher Filtração recursiva, não recursiva ou sem filtragem. A figura abaixo mostra a saída do filtro. Download Moving Average Filtrar código-fonte

Comments

Popular Posts